

Maple Valley Legacy Site

Final Presentation December 5, 2018

UW CEP 498

Justin Apolonio, Grace Arsenault, Manny Salinas, Austin Shipman, Christoph Strouse

MAPLE VALLEY

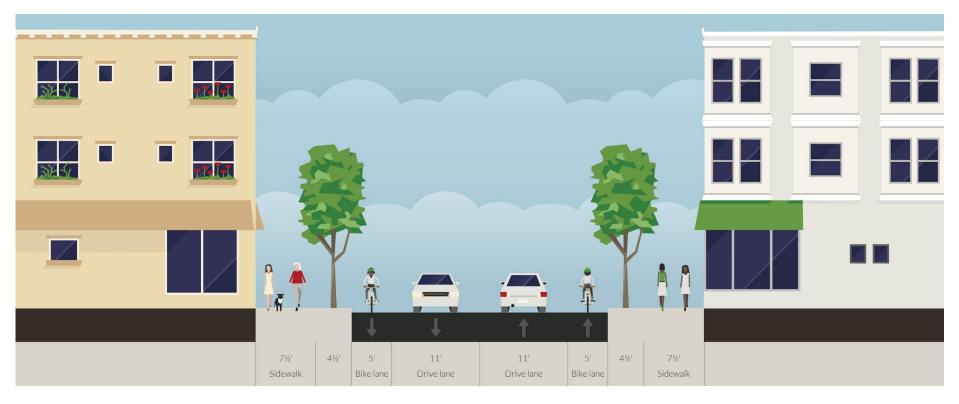
W UNIVERSITY of WASHINGTON

Agenda

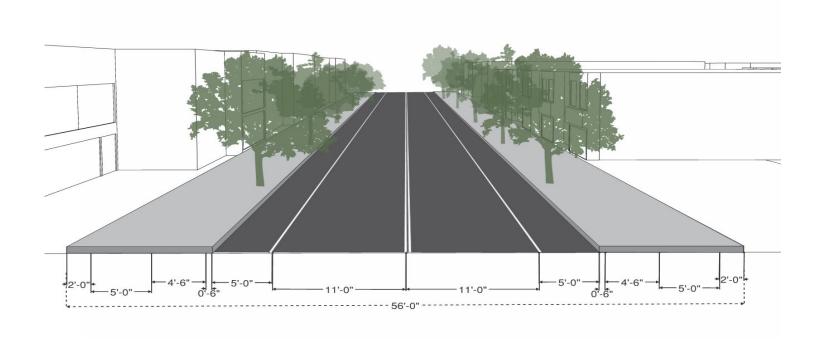
- Street Design Concepts
- Cost Comparisons
- Potential Funding Sources
- Moving Forward: Next Steps

Maple Valley Legacy Site Scope of Work Overview

Phase I - Site Infrastructure


Scope of Work

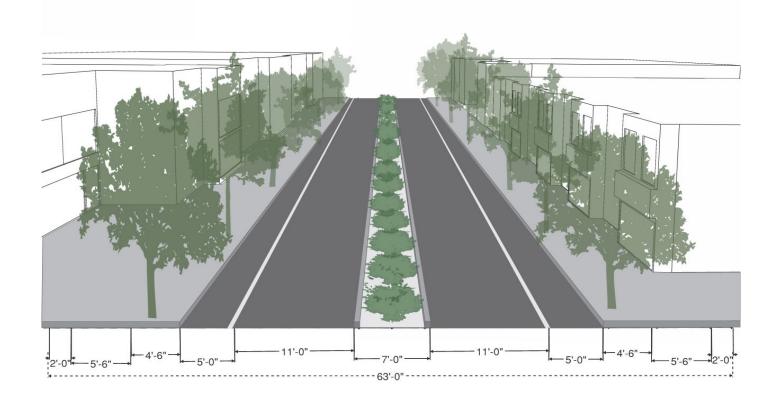
- Development of three road schemes
- Cost estimates of road schemes
- Sources of funding


Preliminary Street Design Concepts

Basic Scheme - 56' Width

Basic Scheme - 56' Width

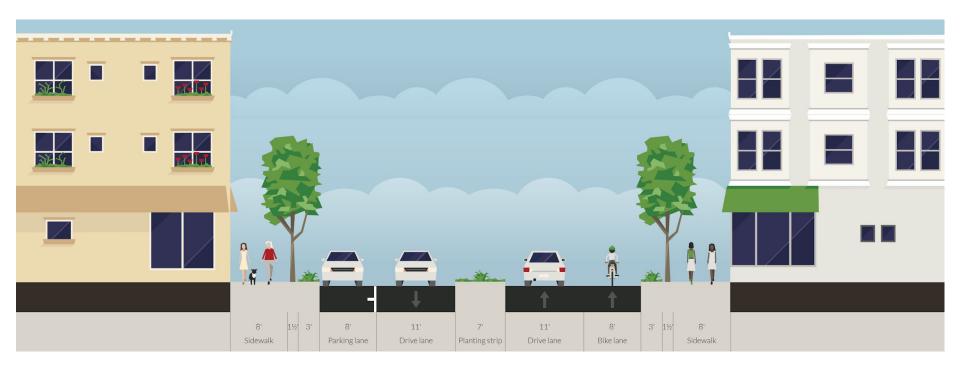
Basic Scheme - 56' Width


Preliminary Street Design Concepts

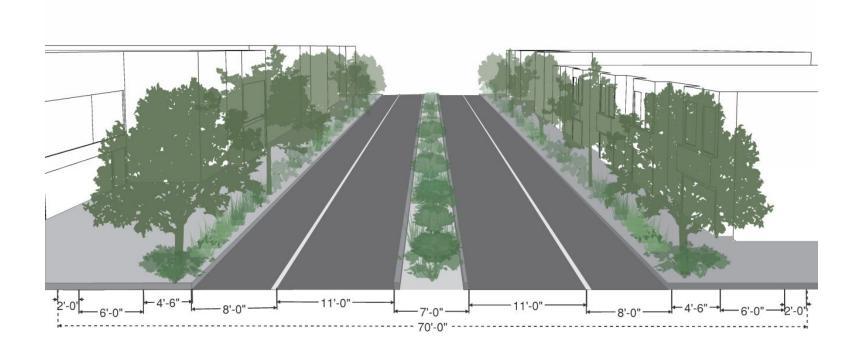
Boulevard Scheme - 63' Width

Boulevard Scheme - 63' Width

Boulevard Scheme - 63' Width

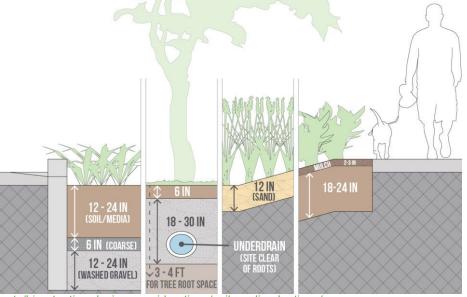


Preliminary Street Design Concepts


Boulevard Scheme w/Green Stormwater Infrastructure (GSI)

- 70' Width

Boulevard Scheme w/GSI - 70' Width


Boulevard Scheme w/GSI - 70' Width

Green Stormwater Infrastructure

Across the country, local governments are integrating green stormwater infrastructure (GSI) into the streetscape to manage urban stormwater runoff. Implemented to reduce combined sewer overflows (CSOs), streetside GSI also treats polluted runoff and creates a thriving, pedestrian-friendly streetscape by providing physical buffers, reducing imperviousness, increasing opportunities for tree canopy, mitigating heat island effect, and promoting traffic calming.

https://nacto.org/publication/urban-street-stormwater-guide/stormwater-elements/bioretention-design-considerations/soil-media-plantings/https://thefield.asla.org/2014/02/11/stormwater-infrastructure-streetscapes/

Green Stormwater Infrastructure (GSI)

GSI is used for pervious pavement, medians and strips to manage urban stormwater runoff.

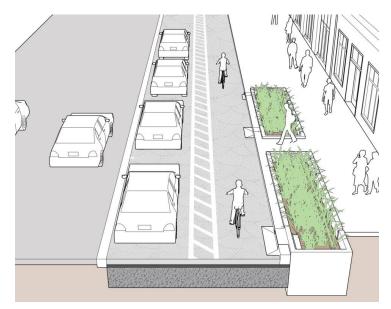
Permeable/Pervious Pavement

Pervious pavements are most often applied on bikeways, parking lanes, and streets with lower vehicle traffic volumes and limited heavy vehicles. Sidewalks may also employ porous concrete to increase infiltrative area.

Stormwater Median

On wide boulevard and parkways, GSI can be coupled with greenways for bicycling and walking, providing attractive public space adjacent to stormwater management.

Stormwater Strip



Stormwater strips can integrate with sidewalks, medians, curbs, and other features. Depending on the desired configuration

https://nacto.org/publication/urban-street-design-guide/street-design-elements/stormwater-management/pervious-pavement/ http://www.washingtonnature.org/fieldnotes/how-to-filter-2-million-gallons-of-stormwater-from-the-aurora-bridge

Permeable Pavement

Pervious pavements are most often applied on bikeways, parking lanes, and streets with lower vehicle traffic volumes and limited heavy vehicles. Sidewalks may also employ porous concrete to increase infiltrative area.

Permeable pavement in the roadway infiltrates runoff directly underneath, and is comprised of permeable interlocking concrete pavers or porous asphalt or concrete. Permeable paving is suitable in contexts with lighter use.

https://nacto.org/publication/urban-street-stormwater-guide/stormwater-elements/green-stormwater-elements/permeable-pavement/https://nacto.org/publication/urban-street-stormwater-guide/planning-for-stormwater/solving-street-design-puzzle/

Stormwater Median

On very wide streets and parkways, green stormwater infrastructure can be coupled with greenways for bicycling and walking, providing attractive public space adjacent to stormwater management.

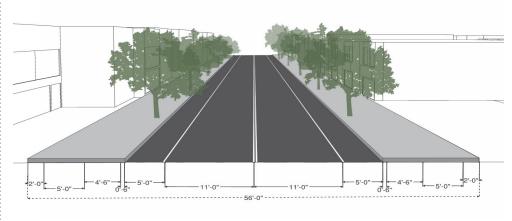
Wide medians used to separate traffic directions may be utilized for large amounts of water conveyance and infiltration.

https://nacto.org/publication/urban-street-stormwater-quide/stormwater-elements/green-infrastructure-configurations/stormwater-median/

Stormwater Strip

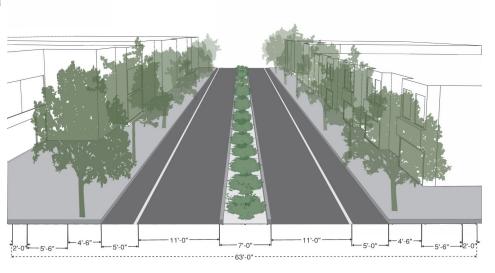
Stormwater strips can integrate with sidewalks, medians, curbs, and other features. Depending on the desired configuration

Stormwater strips require long, continuous spaces to treat and filter pollutants.

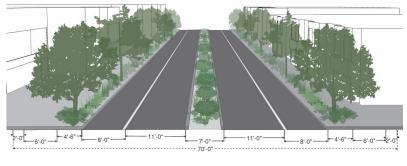


Street Infrastructure Cost Comparisons

Basic, Boulevard, and Boulevard w/GSI Schemes


Street Infrastructure Cost - Basic

Cost Breakdown	Total Cost
Construction Costs Subtotal	\$2,715,000
Contingencies	\$271,000
Design Engineering @ 10%	\$299,000
Construction Management @ 8%	\$239,000
Right of Way	\$0
Project Total Cost	\$3,524,000
Est. Cost Per Linear Foot	\$1700


Street Infrastructure Cost - Boulevard

Cost Breakdown	Total Cost	
Construction Costs Subtotal	\$2,849,000	
Contingencies	\$285,000	
Median	\$597,000	
Design Engineering @ 10%	\$313,000	
Construction Management @ 8%	\$251,000	
Right of Way	\$0	
Project Total Cost	\$4,295,000	
Est. Cost Per Linear Foot	\$2,000	

Street Infrastructure Cost - Boulevard w/GSI

Cost Breakdown	Total Cost
Construction Costs Subtotal	\$2,943,000
Contingencies	\$294,000
Design Engineering @ 10%	\$324,000
Construction Management @ 8%	\$259,000
Right of Way	\$0
Permeable Pavement	\$406,000
Stormwater Median (7' Width)	\$916,000
Biofiltration Strips (9' total Width)	\$177,000
Project Total Cost	\$5,319,000
Est. Cost Per Linear Foot	\$2,500

Street Infrastructure Cost - Summary

Cost Breakdown	Basic	Boulevard	Boulevard with GSI
Construction Costs Subtotal	\$2,715,000	\$2,849,000	\$2,943,000
Contingencies	\$271,000	\$285,000	\$294,000
Design Engineering @ 10%	\$299,000	\$313,000	\$324,000
Construction Management @ 8%	\$239,000	\$251,000	\$259,000
Right of Way	\$0	\$0	\$0
Median	Not Applicable	\$597,000	\$916,000
Permeable Pavement	Not Applicable	Not Applicable	\$406,000
Biofiltration Strips	Not Applicable	Not Applicable	\$177,000
Project Total Cost	\$3,524,000	\$4,295,000	\$5,319,000
Est. Cost Per Linear Foot	\$1,700	\$2,000	\$2,500

Projected Infrastructure Funding Sources

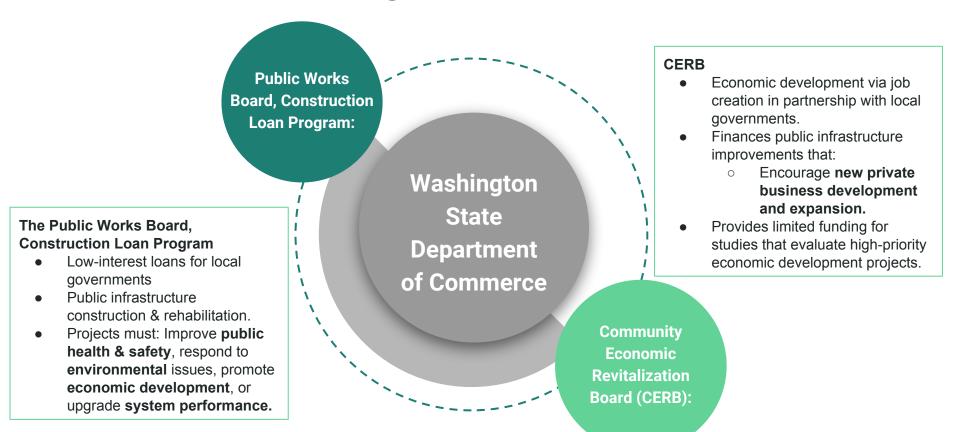
Based on Maple Valley 2019 Six-Year Transportation Improvement Plan

Funding Sources	Estimated Percentage
Real Estate Excise Tax (REET)	15%
Transportation Impact Fee (TIF)	28%
Transportation Benefit District (TBD)	5%
Grants	41%
Stormwater Management Fund (SWM)	9%
Private/Mitigate	Not Applicable
Other	2%

Infrastructure Funding Sources

Federal, State, and Local Levels

Infrastructure Funding Sources - Federal


Federal: Mainly allocated to federal highways and transit projects

Highway
Trust Fund
(HTF)

Gasoline tax has been historical primary source of federal funding

Funding shortage
Tax rate on gasoline stagnant since 1993
\$305 billion infrastructure bill passed in 2015

Infrastructure Funding Sources - State

Infrastructure Funding Sources - State

WA State Transportation Improvement Board (TIB)

The Washington State Transportation Improvement Board (TIB)

- TIB is an independent state agency, created by the Legislature, that distributes and manages street construction and maintenance grants to cities and urban counties throughout Washington State.
- TIB <u>Urban Programs</u> serve cities with a population of 5,000 or more and counties with urban unincorporated areas.
- TIB issues a call for projects each June for project selection done in November.
- During the call for projects, TIB engineering staff conduct funding program workshops at various locations throughout the state. see the <u>TIB Training</u> page.

Complete Streets Program

- TIB has created the Complete Streets
 Award as a new funding opportunity for local governments.
- The Complete Streets Award is money given to any city or county in Washington state who has an adopted complete streets ordinance to accommodate all users, including pedestrians, transit users, cyclists, and motorists.
- As of 2018 Maple Valley has a Complete Streets Ordinance No O-18-640
- Funding cycle opens in July and is due in December.

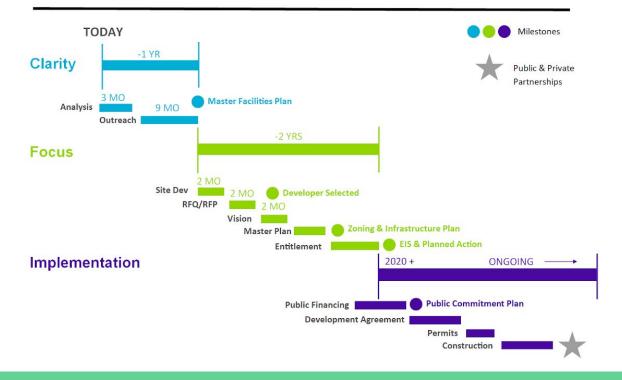
Source: http://www.tib.wa.gov/grants/grants.cfm

Infrastructure Funding Sources - State & Local

Type of Funding	State Level	Local Level	Details
Municipal Bonds	/	/	General obligation bondsRevenue bonds
Special Fuel Tax	/	/	 Approved for use in WA state Voter approval required Less impactful w/fuel efficient vehicles
Special Sales Tax	/	/	Approved for use in WA stateVoter approval required
Vehicle RegistrationFees	/	/	 Approved for use in WA state Already being utilized to fund certain WA state projects

Local Case Study

City of Covington: Lakepointe Urban Village Subarea


- Covington Connector
 - Two phases first: modifications to existing road infrastructure
 - Second: construction of new roadway
- \$24 million Connecting Washington Funds
- Connecting Washington:
 - WSDOT program
 - 2015 funding package: \$16 billion
 - 16-year program, funded primarily by an 11.9-cent gasoline tax increase that was fully phased-in on July 1, 2016.
- Additional funding development fees

2016 Maple Valley Legacy Site Task Force Timeline

- Phase 1: Construction of main street infrastructure, most likely to be publicly funded on the local level
- Phase 2: Construction of arterial/secondary streets related to development of each specific parcel opportunity to explore public private partnerships (P3)

LEGACY SITE TIMELINE

Recommendations & Next Steps

- Immediate Future:
 - Explore public funding sources as primary option for Phase 1 infrastructure construction
- Moving Forward:
 - Initiate request for proposal (RFP) process from developers
 - Public private partnerships for individual parcels

Thank you & Questions

Edward D. Blum: blumedw@uw.edu

Contacts

Justin Apolonio: <u>apoloj@uw.edu</u>

Grace Arsenault: graceea@uw.edu Manny Salinas: emmans2@uw.edu

Austin Shipman: <u>austinella.ship@gmail.com</u>

Christoph Strouse: christophstrouse@gmail.com